A Type Theory for Parameterised Spectra (A Dependent Bunched Logic)

Mitchell Riley¹ jww. Dan Licata¹ Eric Finster²

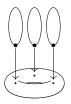
Wesleyan University¹ University of Birmingham²

15th July 2020

The Intended Semantics

Definition

A parameterised spectrum is a space-indexed family of spectra.



Variables

VAR
$$\overline{\Gamma, x : A, \Gamma' \vdash x : A}$$
VAR-ZERO VAR-ROUNDTRIP
$$\overline{\Gamma, x :: A, \Gamma' \vdash x : A}$$

$$\overline{\Gamma, x :: A, \Gamma' \vdash x : A}$$

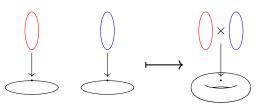
$$\overline{\Gamma, x :: A, \Gamma' \vdash x : A}$$

Using a variable x: A marked means only referring to the *base* space of A.

There is a modality \$\\$\\$ internalising this marked property of contexts.

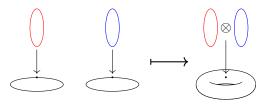
The Ordinary Product

For two types A and B there is a type $A \times B$:



The Monoidal Product

For two types A and B there should be a type $A \otimes B$ corresponding to the 'external smash product'.



This is a symmetric monoidal product with no additional structural rules. (i.e., no weakening or contraction)

Simple Bunched Contexts

We can take a cue from 'bunched logics', where there are two ways of combining contexts, an ordinary cartesian one and a linear one.

$$\frac{\Gamma_1 \ \text{ctx} \qquad \Gamma_2 \ \text{ctx}}{\Gamma_1, \Gamma_2 \ \text{ctx}} \qquad \qquad \frac{\Gamma_1 \ \text{ctx} \qquad \Gamma_2 \ \text{ctx}}{\{\Gamma_1\}\{\Gamma_2\} \ \text{ctx}}$$

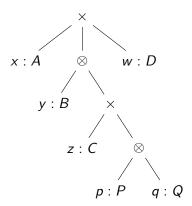
For the comma *only*, we have weakening and contraction as normal.

Simple Bunched Contexts

A typical context:

$$x : A, \{y : B\}\{z : C, \{p : P\}\{q : Q\}\}, w : D$$

Or as a tree:



Simple Smash

$$\otimes \text{-INTRO} \frac{\Gamma \equiv \Gamma', \{\Omega\}\{\Omega'\}, \Gamma''}{\Omega \vdash a : A \qquad \Omega' \vdash b : B} \frac{\Gamma \vdash a \otimes b : A \otimes B}{\Gamma \vdash a \otimes b : A \otimes B}$$

So to introduce a term of $A \otimes B$, use associativity/symmetry to rearrange the bunches into two pieces and use them separately.

Smash and Dependency

- Within a x-bunch (things 'comma'ed together), types can depend as normal.
- Within a ⊗-bunch, (things 'bracket'ed together), types can only use variables of other children marked.

$$x : A, \{y : B(\underline{x})\}\{z : C(\underline{x},\underline{y}), w : D(\underline{x},\underline{y},z)\}$$

This doesn't degenerate to separate 'linear' and 'non-linear' worlds, as in other linear dependent theories.

$$x: A \otimes B, \{y: A\}\{z: B\}, p: \operatorname{Id}(x, y \otimes z)$$

And previous dependent bunched logics had no dependence between bunches.

Smash and Dependency

Dependency has broken our intro rule, we cannot reorganise the context to get any 'split' we want. E.g., with simple types we have

$$\frac{\{x : A\}\{z : C\} \vdash e : E \qquad y : B \vdash f : F}{\{x : A\}\{z : C\}\{y : B\} \vdash e \otimes f : E \otimes F}$$
$$\frac{\{x : A\}\{y : B\}\{z : C\} \vdash e \otimes f : E \otimes F}{\{x : A\}\{y : B\}\{z : C\} \vdash e \otimes f : E \otimes F}$$

But if C depends on y we are stuck.

$$\frac{\{x:A,\underline{y}::B\}\{z:C\}\vdash e:E \qquad \underline{x}::A,y:B,\underline{z}::C\vdash f:F}{\{x:A\}\{y:B\}\{z:C\}\vdash e\otimes f:E\otimes F}$$

We can apply contraction to the underlying spaces.

A Different Syntax for Bunches

Doing everything using this bunched structure gets complicated. And the context manipulation isn't annotated in the term. Idea: Have the structure of the bunches tracked separately.

$$\mathfrak{r} \otimes \mathfrak{b} \mid x^{\top} : A, y^{\mathfrak{r}} : B, z^{\mathfrak{b}} : C \operatorname{\mathsf{ctx}}$$

- ▶ The 'palette' $\mathfrak{r} \otimes \mathfrak{b}$ describes the shape of the context tree,
- ► The context x^{\top} : $A, y^{\mathfrak{r}}$: $B, z^{\mathfrak{b}}$: C describes what's at the leaves.

Palettes

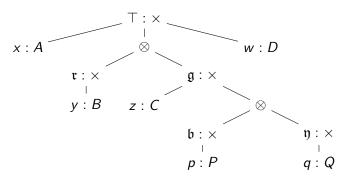
Our context from before

$$x : A, \{y : B\}\{z : C, \{p : P\}\{q : Q\}\}, w : D$$

would be written

$$\mathfrak{r} \otimes (\mathfrak{g} \equiv \mathfrak{b} \otimes \mathfrak{y}) \mid x^{\top} : A, y^{\mathfrak{r}} : B, z^{\mathfrak{g}} : C, p^{\mathfrak{b}} : P, q^{\mathfrak{y}} : Q, w^{\top} : D \text{ ctx}$$

The palette is describing the tree



Dependent Smash

Specifying how to divide the context in \otimes -intro is now a little combinatorial problem on palettes. We write

$$\Phi \vdash \Phi_L \boxtimes \Phi_R$$
 split

for this judgement.

$$\otimes \text{-}_{\text{FORM}} \frac{\cdot \mid \underline{\Gamma} \vdash A \text{ type} \qquad \cdot \mid \underline{\Gamma}, \underline{x} :: \underline{A} \vdash B \text{ type}}{\Phi \mid \Gamma \vdash (\underline{x} : A) \otimes B \text{ type}}$$

$$\otimes\text{-INTRO} \ \frac{ \Phi_L \mid \Gamma^{\Phi_L} \vdash a : A \qquad \Phi_R \mid \Gamma^{\Phi_R} \vdash b : B[\underline{a}/\underline{x}] }{ \Phi \mid \Gamma \vdash a \otimes b : (\underline{x} : A) \otimes B }$$

Splits

$$\mathfrak{r} \otimes (\mathfrak{g} \equiv \mathfrak{b} \otimes \mathfrak{y}) \vdash (\mathfrak{r}) \boxtimes (\mathfrak{g} \equiv \mathfrak{b} \otimes \mathfrak{y}) \text{ split}$$

$$x : A \otimes w : D$$

$$\mathfrak{g} : \times y : B \qquad z : C \otimes \mathfrak{g} : \times \mathfrak{g} : \mathfrak{g}$$

Splits

Splits

Synthetic Stable Homotopy Theory

This type theory is intended to be actually used! Some simple test cases:

- For any map of base spaces $f: X \to Y$ one can internally define the $f_! \dashv f^* \dashv f_*$ and \otimes , Hom functors of a 'Wirthmüller context'.
- For any type \underline{A} , and point \underline{x} in the base space, the spectrum over \underline{x} is a module over $\Sigma^{\infty}\Omega_{x}(\natural A)$.

Implementation Challenges

- Multiple ways to use the same variable,
- ▶ The set of labels on variables is not fixed,
- ▶ In a proof assistant, one would prefer to not have to fix the context split in advance.