A Type Theory for Parameterised Spectra
(A Dependent Bunched Logic)

Mitchell Riley?
jww. Dan Licata!
Eric Finster?

Wesleyan University!
University of Birmingham?

15t July 2020

The Intended Semantics

Definition
A parameterised spectrum is a space-indexed family of spectra.

00
R

Variables

VAR

Mx:AlNFx: A

VAR-ZERO VAR-ROUNDTRIP

Mx:ATMFx:A Mx: AlMFx: A

Using a variable x : A marked means only referring to the base
space of A.

There is a modality f internalising this marked property of contexts.

The Ordinary Product

For two types A and B there is a type A x B:

The Monoidal Product

For two types A and B there should be a type AR B
corresponding to the ‘external smash product’.

U0 Dl

A AT

This is a symmetric monoidal product with no additional structural
rules. (i.e., no weakening or contraction)

Simple Bunched Contexts

We can take a cue from ‘bunched logics’, where there are two ways
of combining contexts, an ordinary cartesian one and a linear one.

M ctx 5 ctx M1 ctx 5 ctx
|_1, [ctx {I‘l}{l'z} ctx

For the comma only, we have weakening and contraction as
normal.

Simple Bunched Contexts

A typical context:

x:A{y:BH{z: C,{p: P}H{q: Q}},w:D

Or as a tree:

Simple Smash

Fr=r {Qa',r”
QFa: A Qr+b:B
lFa@b: A B

®-INTRO

So to introduce a term of A® B, use associativity/symmetry to
rearrange the bunches into two pieces and use them separately.

Smash and Dependency

» Within a x-bunch (things ‘comma’ed together), types can
depend as normal.

» Within a ®-bunch, (things ‘bracket’ed together), types can
only use variables of other children marked.

x: Ay :B(x)H{z: C(x,y),w: D(x,y,z)}

This doesn’t degenerate to separate ‘linear’ and ‘non-linear’ worlds,
as in other linear dependent theories.

x:A® B,{y : AH{z: B},p:ld(x,y ® z)

And previous dependent bunched logics had no dependence
between bunches.

Smash and Dependency

Dependency has broken our intro rule, we cannot reorganise the
context to get any ‘split’ we want. E.g., with simple types we have

{x:AH{z:C}t+e:E y:BFf:F
{x:A{z:CH{y:B}texf: EQF
{x:AH{y :B}{z: C}Fe®f E®QF

But if C depends on y we are stuck.

{x:Ay:BH{z:C}Fe:E xutAy:Bz:CHf:F
{x:AH{y:BH{z: C}Fe®f: EQF

We can apply contraction to the underlying spaces.

A Different Syntax for Bunches

Doing everything using this bunched structure gets complicated.
And the context manipulation isn't annotated in the term. Idea:
Have the structure of the bunches tracked separately.

t®b|xT:A,yt:B,zb:Cctx

> The ‘palette’ t ® b describes the shape of the context tree,

» The context x| : A, y*: B, z% : C describes what's at the
leaves.

Palettes

Our context from before
x:Ady:BHz: C,{p: PHa: Q}},w: D
would be written
t@(@=b®y)|x Ay B z0:C,p°:P,q": Qw' :D ctx

The palette is describing the tree

T: X%
x: A & w: D
/ \
v X g X
[—
y: B z:C \®
N
b: x n:X

Dependent Smash

Specifying how to divide the context in ®-intro is now a little
combinatorial problem on palettes. We write

O+ P, Xdg split
for this judgement.

|[CHAtype -|[x: Al Btype
O |IMF(x:A)® B type

®-FORM

® - &, Kdg split
O, [T®Fa:A &g |T®R b Bla/x]
¢|TFawb:(x:A®B

&®-INTRO

Splits

t@(@=by)F (tr) X (g=b®y) split

T:
x: A & w:D
S
v X g: X
[—
y: B z:C \®
T
b: x)

Splits

t®@((g=b®n)F (g=b®y) X (r) split

T:
x: A & w:D
S
v X g: X
[—
y: B z:C \®
T
b: x)

Splits

tR(g=b@y)F (p=r®b) X (y) split

T:
x: A & w:D
T
v X g: X
[-
y: B z:C \®
S
b: x)

Synthetic Stable Homotopy Theory

This type theory is intended to be actually used! Some simple test
cases:

» For any map of base spaces f : X — Y one can internally
define the fi 4 f* - f, and ®, Hom functors of a ‘Wirthmiiller

context’.
» For any type A, and point x in the base space, the spectrum
over x is a module over X>°Q, (§A).

Implementation Challenges

» Multiple ways to use the same variable,
» The set of labels on variables is not fixed,

» In a proof assistant, one would prefer to not have to fix the
context split in advance.

