
Extending Homotopy Type Theory
with Linear Type Formers

Mitchell Riley1

jww. Dan Licata1

Eric Finster2

Wesleyan University1

University of Cambridge2

26th March 2021

Homotopy Type Theory

Our Setting

Martin-Löf Type Theory with:
I Dependent pair types (x : A)× B
I Dependent function types (x : A)→ B
I Empty type 0
I Unit type 1
I Equality types a =A a′

I Universe U

Equality Types

=-FORM
Γ ` a : A Γ ` a′ : A

Γ ` a =A a′ : U
=-INTRO

Γ ` a : A
Γ ` refla : a =A a

=-ELIM

Γ, x : A, y : A, z : x =A y ` C : U
Γ,w : A ` c : C[w/x,w/y, reflw/z]

Γ ` p : a =A a′

Γ ` let reflw = p in c : C[a/x, b/y, p/z]

I Intro: There is always a reflexivity equality.
I Elim: If type depending on a generic equality is inhabited

for reflexivity, it’s inhabited for any equality.

Equality of Pairs

Equality of pairs can be described explicitly.

Lemma
(a, b) =(x:A)×B (a′, b′) is equivalent to

(p : a =A a′)× (b =B(a) p∗b′)

where p∗ : B(a′)→ B(a) is defined using =-elim.

Definition
A function f : A→ B is an equivalence if it has a left inverse
and right inverse (up to =). Write A ' B for a pair of a map
A→ B and a proof it is an equivalence.

Equality of Pairs

Equality of pairs can be described explicitly.

Lemma
(a, b) =(x:A)×B (a′, b′) is equivalent to

(p : a =A a′)× (b =B(a) p∗b′)

where p∗ : B(a′)→ B(a) is defined using =-elim.

Definition
A function f : A→ B is an equivalence if it has a left inverse
and right inverse (up to =). Write A ' B for a pair of a map
A→ B and a proof it is an equivalence.

Equality of Functions

We can’t prove anything interesting about equality of functions.

Is there a candidate type for f =(x:A)→B g to be equivalent to?
Yes!

(λp.let reflh = p inλx.reflh(x))

: (f = g)→
(
(x : A)→ f (x) =B(x) g(x)

)

Axiom (Function Extensionality)
This map is an equivalence.
Asserting this axiom restricts the interpretations of the type
theory. (But sets still work!)

Equality of Functions

We can’t prove anything interesting about equality of functions.
Is there a candidate type for f =(x:A)→B g to be equivalent to?

Yes!

(λp.let reflh = p inλx.reflh(x))

: (f = g)→
(
(x : A)→ f (x) =B(x) g(x)

)

Axiom (Function Extensionality)
This map is an equivalence.
Asserting this axiom restricts the interpretations of the type
theory. (But sets still work!)

Equality of Functions

We can’t prove anything interesting about equality of functions.
Is there a candidate type for f =(x:A)→B g to be equivalent to?
Yes!

(λp.let reflh = p inλx.reflh(x))

: (f = g)→
(
(x : A)→ f (x) =B(x) g(x)

)

Axiom (Function Extensionality)
This map is an equivalence.
Asserting this axiom restricts the interpretations of the type
theory. (But sets still work!)

Equality of Functions

We can’t prove anything interesting about equality of functions.
Is there a candidate type for f =(x:A)→B g to be equivalent to?
Yes!

(λp.let reflh = p inλx.reflh(x))

: (f = g)→
(
(x : A)→ f (x) =B(x) g(x)

)

Axiom (Function Extensionality)
This map is an equivalence.

Asserting this axiom restricts the interpretations of the type
theory. (But sets still work!)

Equality of Functions

We can’t prove anything interesting about equality of functions.
Is there a candidate type for f =(x:A)→B g to be equivalent to?
Yes!

(λp.let reflh = p inλx.reflh(x))

: (f = g)→
(
(x : A)→ f (x) =B(x) g(x)

)

Axiom (Function Extensionality)
This map is an equivalence.
Asserting this axiom restricts the interpretations of the type
theory. (But sets still work!)

Equality of Types

What about the universe?

Another guess:

(λp.let reflC = p in idC) : (A = B)→ (A ' B)

Axiom (Univalence)
This map is an equivalence.

Equality of Types

What about the universe? Another guess:

(λp.let reflC = p in idC) : (A = B)→ (A ' B)

Axiom (Univalence)
This map is an equivalence.

Equality of Types

What about the universe? Another guess:

(λp.let reflC = p in idC) : (A = B)→ (A ' B)

Axiom (Univalence)
This map is an equivalence.

Uniqueness of Identity Proofs?

In sets, the type a =A a′ is given by {?} if the element a is the
same element as a′, and ∅ otherwise.

Axiom (Uniqueness of Identity Proofs)
For any p, p′ : a =A a′, there is a term of p = p′.
UIP and Univalence are incompatible:

Proof.
There are two equivalences id, swap : Bool ' Bool. Univalence
turns these into equalities ua(id),ua(id) : Bool = Bool, and UIP
claims these equalities are equal. So ua(id) = ua(swap) which
means id = swap, but then

true = id(true) = swap(true) = false,

uh oh.

Uniqueness of Identity Proofs?

In sets, the type a =A a′ is given by {?} if the element a is the
same element as a′, and ∅ otherwise.

Axiom (Uniqueness of Identity Proofs)
For any p, p′ : a =A a′, there is a term of p = p′.

UIP and Univalence are incompatible:

Proof.
There are two equivalences id, swap : Bool ' Bool. Univalence
turns these into equalities ua(id),ua(id) : Bool = Bool, and UIP
claims these equalities are equal. So ua(id) = ua(swap) which
means id = swap, but then

true = id(true) = swap(true) = false,

uh oh.

Uniqueness of Identity Proofs?

In sets, the type a =A a′ is given by {?} if the element a is the
same element as a′, and ∅ otherwise.

Axiom (Uniqueness of Identity Proofs)
For any p, p′ : a =A a′, there is a term of p = p′.
UIP and Univalence are incompatible:

Proof.
There are two equivalences id, swap : Bool ' Bool. Univalence
turns these into equalities ua(id),ua(id) : Bool = Bool, and UIP
claims these equalities are equal. So ua(id) = ua(swap) which
means id = swap, but then

true = id(true) = swap(true) = false,

uh oh.

Proof Relevance

f : a =A b
g : a =A b
k : a =A b

p : f =a=Ab g

a

b

kp
f

g

A

k

f

g

p

a =A b

Diagram stolen from Pelayo and Warren

Proof Relevance

f : a =A b
g : a =A b
k : a =A b
p : f =a=Ab g

a

b

kp
f

g

A

k

f

g

p

a =A b

Diagram stolen from Pelayo and Warren

Homotopical Interpretations

Theorem (Kapulkin and Lumsdaine 2012, after
Voevodsky)
HoTT, meaning (MLTT + Univalence + HITs), has an interpretation
in ‘simplicial sets’.
which are a model of the homotopy theory of spaces. I think of
these as ‘sets with possibly complicated equalities’.

Homotopy (Type Theory)↔ (Homotopy Type) Theory

Homotopical Interpretations

Theorem (Kapulkin and Lumsdaine 2012, after
Voevodsky)
HoTT, meaning (MLTT + Univalence + HITs), has an interpretation
in ‘simplicial sets’.
which are a model of the homotopy theory of spaces. I think of
these as ‘sets with possibly complicated equalities’.

Homotopy (Type Theory)↔ (Homotopy Type) Theory

Working Synthetically

Result Date Synthetic Version

π1(S1) = Z 1892 Licata, Shulman

Freudenthal Suspension
Theorem

1937 Lumsdaine

Blakers–Massey Theorem 1949
Favonia, Finster,
Licata, Lumsdaine

James Construction 1955 Brunerie

Localisation of Spaces 1970
Christensen, Opie, Rijke,
Scoccola

Can be formalised and apply in all models.

Modal Homotopy Type Theory

Brouwer’s Fixed Point Theorem

Sometimes working up to homotopy is not enough.

Theorem (Brouwer)
Let D2 denote the unit disc. Any continuous map f : D2 → D2 has a
fixed point.

x=f(x)

D2

f(D2)

Up to homotopy, D2 is equivalent to 1. But then the theorem is
contentless: of course any map 1→ 1 has a fixed point.

We need a way of thinking about D2 as a topological space
made up of distinct points that are not equal to each other.

Brouwer’s Fixed Point Theorem

Sometimes working up to homotopy is not enough.

Theorem (Brouwer)
Let D2 denote the unit disc. Any continuous map f : D2 → D2 has a
fixed point.

x=f(x)

D2

f(D2)

Up to homotopy, D2 is equivalent to 1. But then the theorem is
contentless: of course any map 1→ 1 has a fixed point.

We need a way of thinking about D2 as a topological space
made up of distinct points that are not equal to each other.

Change the Interpretation

Rather than interpreting types as homotopy types
(= sets with complicated equality),

we can interpret them as ‘topological∞-groupoids’
(= sets with complicated equality AND a topology)

Trivial Equality Interesting Equality

Trivial
Topology

1, N

Interesting
Topology

D2 ⊂ R2, S1 ⊂ R2 U

Change the Interpretation

Rather than interpreting types as homotopy types
(= sets with complicated equality),

we can interpret them as ‘topological∞-groupoids’
(= sets with complicated equality AND a topology)

Trivial Equality Interesting Equality

Trivial
Topology

1, N

Interesting
Topology

D2 ⊂ R2, S1 ⊂ R2 U

Accessing the New Structure

Cohesive Type Theory (Shulman 2018) adds new unary type
formers:
I]A retopologises A with the codiscrete topology
I [A retopologises A with the discrete topology
I SA turns topological paths in A into equalities

Trivial Equality Interesting Equality

Trivial
Topology

1, N, SD2 SS1

Interesting
Topology

D2 ⊂ R2, S1 ⊂ R2 U

Accessing the New Structure

Cohesive Type Theory (Shulman 2018) adds new unary type
formers:
I]A retopologises A with the codiscrete topology
I [A retopologises A with the discrete topology
I SA turns topological paths in A into equalities

Trivial Equality Interesting Equality

Trivial
Topology

1, N, SD2 SS1

Interesting
Topology

D2 ⊂ R2, S1 ⊂ R2 U

Rules for [

Extremely roughly:

[-INTRO
Γ ` a : A

f(Γ) ` a[: [A

[-ELIM

Γ, z : [A ` C type
Γ ` s : [A Γ, f(x : A) ` c : C[x[/z]

Γ ` let x[= s in c : C[s/z]

Much like � in the style of (Pfenning and Davies 2001)
Or ! in Dual Intuitionistic Linear Logic by (Barber 1996)

Plan

The plan is:
1. Think of a model of HoTT with more structure than bare

homotopy types,
2. Add some semantic operations as context formers,
3. Add new type formers internalising the context formers.

Our goal is to extend HoTT so we have access to all the
synthetic results proven so far.

Homotopy Type Theory and Linearity

Stable Homotopy Theory

An important tool in homotopy theory is ‘cohomology’. For
any space X, there is a sequence of groups Hn(X) containing
information about the space.

There are many kinds of cohomology H, and each kind can be
packaged into a ‘spectrum’. A spectrum is a proof relevant
version of an abelian group.

Definition
A spectrum E is a sequence of pointed types E : N→ U? together
with pointed equivalences αn : En →? ΩEn+1, where
Ω(A, ?) :≡ (? =A ?).
E0 ' ΩE1, so E0 is a group. E0 ' ΩΩE2, so E0 is abelian.
E0 ' ΩΩΩE3, so the commutativity of E0 satisfies one level of
coherence . . .

Stable Homotopy Theory

An important tool in homotopy theory is ‘cohomology’. For
any space X, there is a sequence of groups Hn(X) containing
information about the space.

There are many kinds of cohomology H, and each kind can be
packaged into a ‘spectrum’. A spectrum is a proof relevant
version of an abelian group.

Definition
A spectrum E is a sequence of pointed types E : N→ U? together
with pointed equivalences αn : En →? ΩEn+1, where
Ω(A, ?) :≡ (? =A ?).
E0 ' ΩE1, so E0 is a group. E0 ' ΩΩE2, so E0 is abelian.
E0 ' ΩΩΩE3, so the commutativity of E0 satisfies one level of
coherence . . .

Spectra in Type Theory

We could use the above definition of spectra and manipulate
them using type theory. But that’s hard!

The category of spectra is a model of Intuitionistic Linear Logic
with (⊗,(,& = ⊕). But that is not very expressive compared
with HoTT!

Parameterised Spectra

Definition
A parameterised spectrum is a∞-groupoid indexed family of
spectra.
Translation: a set-with-equality, so that every element has an
associated abelian-group-with-equality.

Theorem (Joyal 2008 plus Shulman 2019)
MLTT + Univalence can be interpreted in parameterised spectra.

Parameterised Spectra

Definition
A parameterised spectrum is a∞-groupoid indexed family of
spectra.
Translation: a set-with-equality, so that every element has an
associated abelian-group-with-equality.

Theorem (Joyal 2008 plus Shulman 2019)
MLTT + Univalence can be interpreted in parameterised spectra.

Parameterised Spectra

Definition
A parameterised spectrum is a∞-groupoid indexed family of
spectra.
Translation: a set-with-equality, so that every element has an
associated abelian-group-with-equality.

Theorem (Joyal 2008 plus Shulman 2019)
MLTT + Univalence can be interpreted in parameterised spectra.

Parameterised Spectra

Definition
A parameterised spectrum is a∞-groupoid indexed family of
spectra.
Translation: a set-with-equality, so that every element has an
associated abelian-group-with-equality.

Theorem (Joyal 2008 plus Shulman 2019)
MLTT + Univalence can be interpreted in parameterised spectra.

Tensor Product

For two types A and B there should be a type A⊗ B that
calculates the ‘external tensor product’.

⊗

This is a symmetric monoidal product with no additional
structural rules, like the ⊗ of linear logic.

Bunched Contexts

We can take a cue from ‘bunched logics’ (O’Hearn and Pym
1999), where there are two ways of combining contexts, an
ordinary cartesian one and a linear one.

Γ1 ctx Γ2 ctx
Γ1,Γ2 ctx

Γ1 ctx Γ2 ctx
(Γ1)(Γ2) ctx

For the comma only, we have weakening and contraction as
normal.

(We are ignoring dependency in ⊗ for now)

Bunched Contexts

A typical context:

x : A, (y : B)(z : C, (p : P)(q : Q)),w : D

Or as a tree:

×

x : A ⊗

y : B ×

z : C ⊗

p : P q : Q

w : D

Bunched Contexts

A typical context:

x : A, (y : B)(z : C, (p : P)(q : Q)),w : D

Or as a tree:

×

x : A ⊗

y : B ×

z : C ⊗

p : P q : Q

w : D

Instead: Palettes

This gets very confusing very fast. Instead, we track the tree
structure of the context separately, in a ‘palette’.

(x : A)(y : B), z : C,w : D

becomes

r⊗ b | xr : A, yb : B, z> : C,w> : D

where the palette r⊗ b on its own represents

> : ×

⊗

r : ×

vars...

b : ×

vars...

vars...

Instead: Palettes

This gets very confusing very fast. Instead, we track the tree
structure of the context separately, in a ‘palette’.

(x : A)(y : B), z : C,w : D

becomes

r⊗ b | xr : A, yb : B, z> : C,w> : D

where the palette r⊗ b on its own represents

> : ×

⊗

r : ×

vars...

b : ×

vars...

vars...

Instead: Palettes

From earlier,

x : A, (y : B)(z : C, (p : P)(q : Q)),w : D

becomes

r⊗ (g ≺ b⊗ y) | x> : A, yr : B, zg : C, pb : P, py : Q,w> : D

> : ×

⊗

r : × g : ×

⊗

b : × y : ×

Instead: Palettes

From earlier,

x : A, (y : B)(z : C, (p : P)(q : Q)),w : D

becomes

r⊗ (g ≺ b⊗ y) | x> : A, yr : B, zg : C, pb : P, py : Q,w> : D

> : ×

⊗

r : × g : ×

⊗

b : × y : ×

Tensor Types

⊗-FORM
· | · ` A type · | · ` B type

Φ | Γ ` A⊗ B type

We can form A⊗ B for any closed types A and B. (We will
upgrade this later.)

Tensor Types

VAR
Φ | Γ, x> : A,Γ′ ` x : A

A variable is only usable if it has the top colour.

Tensor Types

⊗-INTRO

Φ splits into ΦL and ΦR
ΦL | ΓΦL ` a : A ΦR | ΓΦR ` b : B

Φ | Γ ` a⊗ b : A⊗ B

Whenever we can split the palette into two pieces, use variables
from one piece to prove a and the other to prove b, then we
have a⊗ b : A⊗ B.
Here the colours really come in handy!

Tensor Types

⊗-ELIM

Φ | Γ, z> : A⊗ B ` C type
Φ, r⊗ b | Γ, xr : A, yb : B ` c : C[x⊗ y/z]

Φ | Γ ` s : A⊗ B
Φ | Γ ` let x⊗ y = p in c : C[s/z]

If something holds for a generic tensor pair x⊗ y, then it holds
for any particular p : A⊗ B.

Eg: Symmetry

Proposition
For any types A and B, there is a map swap : A⊗ B→ B⊗ A.

Proof.
Suppose we have a p : A⊗ B. By ⊗-elim, we can suppose p is
equal to x⊗ y for fresh variables x and y. Then we have
y⊗ x : B⊗ A.

λp.let x⊗ y = p in y⊗ x : A⊗ B→ B⊗ A

Note→ is the ordinary function type here.

Eg: Tensors and Ordinary Types

We can do whatever non-linear stuff we like with variables we
have access to:

λp.let x⊗ y = p in (x, x)⊗ y : A⊗ B→ (A× A)⊗ B

λp.let x⊗ y = p in (x =A x)⊗ (y =B y) : A⊗ B→ U ⊗ U

If f : C⊗ C→ N we can do:

λp.let z⊗ w = p in f (p) + f (w⊗ z) : C⊗ C→ N

Eg: Tensors and Ordinary Types

We can do whatever non-linear stuff we like with variables we
have access to:

λp.let x⊗ y = p in (x, x)⊗ y : A⊗ B→ (A× A)⊗ B

λp.let x⊗ y = p in (x =A x)⊗ (y =B y) : A⊗ B→ U ⊗ U

If f : C⊗ C→ N we can do:

λp.let z⊗ w = p in f (p) + f (w⊗ z) : C⊗ C→ N

Eg: Tensors and Ordinary Types

We can do whatever non-linear stuff we like with variables we
have access to:

λp.let x⊗ y = p in (x, x)⊗ y : A⊗ B→ (A× A)⊗ B

λp.let x⊗ y = p in (x =A x)⊗ (y =B y) : A⊗ B→ U ⊗ U

If f : C⊗ C→ N we can do:

λp.let z⊗ w = p in f (p) + f (w⊗ z) : C⊗ C→ N

Non-Eg: Colour Clashes

We cannot define ∆ : A→ A⊗ A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two inputs
to ⊗-intro are not well-formed in disjoint pieces of the palette.

We cannot define e : (A⊗ (A→ B))→ B in general.

We can destruct a term of A⊗ (A→ B) into x : A and f : A→ B,
but f (x) is not well formed: neither variable has the top colour,
so can’t be used.

Non-Eg: Colour Clashes

We cannot define ∆ : A→ A⊗ A in general.

Given a : A, forming a⊗ a : A⊗A is not allowed: the two inputs
to ⊗-intro are not well-formed in disjoint pieces of the palette.

We cannot define e : (A⊗ (A→ B))→ B in general.

We can destruct a term of A⊗ (A→ B) into x : A and f : A→ B,
but f (x) is not well formed: neither variable has the top colour,
so can’t be used.

Dependency?

⊗-INTRO

Φ splits into ΦL and ΦR
ΦL | ΓΦL ` a : A ΦR | ΓΦR ` b : B

Φ | Γ ` a⊗ b : A⊗ B

The syntactic issue with dependency is when we drop variables
in ⊗-intro.

Inspecting the semantics, (x : A)⊗ B(x) only makes sense when
B(x) only varies over the underlying space of x.

Underlying Space

For every type A there is a type \A that deletes the spectral
information.

Marked Variables

We have to add a context version of this operation: we call it
marking, and add a special ‘marked variable’ rule.

VAR-MARKED
Φ | Γ, xr : A,Γ′ ` x : A

⊗-FORM
· | Γ ` A type · | Γ, x : A ` B type

Φ | Γ ` (x : A)⊗ B type

x can be used anywhere, even if xr doesn’t have the top colour.

Marked Variables

Now, when splitting the context, don’t drop anything, just
require it be used marked:

⊗-INTRO
· | x : A, y : B(x) ` c : C · | x : A, y : B(x) ` d : D

r⊗ b | x : A, y : B(x) ` c⊗ d : C⊗D

Other Linear Dependent Theories

I (Schöpp and Stark 2004) is a dependent bunched theory,
but has no dependency across bunches, and assumes the
unit is terminal.
I (Vákár 2014) has linear type formers, but its dependent

pairs/functions work differently to MLTT.
I ‘LNL’ type theories (Isaev 2020; Krishnaswami, Pradic

and Benton 2015) separate linear types from non-linear
types, so existing synthetic results can’t be used.
I Quantitative Type Theories (McBride 2016; Atkey 2018)

have 0-use variables that are similar our marked variables,
but do not allow ‘ordinary’ dependence
I GRTT (Moon, Eades III and Orchard 2021) is a general

framework for dependent modal theories, perhaps there is
an encoding?

References I

Atkey, Robert (2018). ‘Syntax and semantics of quantitative type
theory’. In: Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, pp. 56–65. DOI:
10.1145/3209108.3209189.

Barber, Andrew (1996). Dual Intuitionistic Linear Logic. Tech. rep.
Technical Report ECS-LFCS-96-347. University of Edinburgh.

Isaev, Valery (2020). ‘Indexed type theories’. In: Mathematical
Structures in Computer Science, pp. 1–61. DOI:
10.1017/S0960129520000092.

Joyal, André (2008). Notes on logoi. URL: http:
//www.math.uchicago.edu/˜may/IMA/JOYAL/Joyal.pdf.

Kapulkin, Chris and Peter LeFanu Lumsdaine (2012). ‘The simplicial
model of univalent foundations (after Voevodsky)’. In: Journal of
the European Mathematical Society. arXiv: 1211.2851 [math.LO].
Forthcoming.

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1017/S0960129520000092
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf
http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf
https://arxiv.org/abs/1211.2851

References II

Krishnaswami, Neelakantan R., Pierre Pradic and Nick Benton
(2015). ‘Integrating Linear and Dependent Types’. In: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL ’15. Mumbai, India:
Association for Computing Machinery, pp. 17–30. ISBN:
9781450333009. DOI: 10.1145/2676726.2676969.

McBride, Conor (2016). ‘I got plenty o’ nuttin’’. In: A list of successes
that can change the world. Vol. 9600. Lecture Notes in Comput. Sci.
Springer International Publishing, pp. 207–233. DOI:
10.1007/978-3-319-30936-1_12.

Moon, Benjamin, Harley Eades III and Dominic Orchard (2021).
‘Graded Modal Dependent Type Theory’. In: Programming
Languages and Systems. Ed. by Nobuko Yoshida. Cham: Springer
International Publishing, pp. 462–490.

O’Hearn, Peter W. and David J. Pym (1999). ‘The logic of bunched
implications’. In: Bull. Symbolic Logic 5.2, pp. 215–244. ISSN:
1079-8986. DOI: 10.2307/421090.

https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.2307/421090

References III

Pfenning, Frank and Rowan Davies (2001). ‘A judgmental
reconstruction of modal logic’. In: vol. 11, pp. 511–540. DOI:
10.1017/S0960129501003322.

Schöpp, Ulrich and Ian Stark (2004). ‘A dependent type theory with
names and binding’. In: Computer Science Logic. Vol. 3210. Lecture
Notes in Comput. Sci. Springer, Berlin, pp. 235–249. DOI:
10.1007/978-3-540-30124-0_20.

Shulman, Michael (2018). ‘Brouwer’s fixed-point theorem in
real-cohesive homotopy type theory’. In: Math. Structures Comput.
Sci. 28.6, pp. 856–941. ISSN: 0960-1295. DOI:
10.1017/S0960129517000147.

— (2019). ‘All (∞, 1)-toposes have strict univalent universes’. arXiv:
1904.07004 [math.AT].

Vákár, Matthjis (2014). ‘Syntax and Semantics of Linear Dependent
Types’. arXiv: 1405.0033 [cs.AT].

https://doi.org/10.1017/S0960129501003322
https://doi.org/10.1007/978-3-540-30124-0_20
https://doi.org/10.1017/S0960129517000147
https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/1405.0033

	Homotopy Type Theory
	Modal Homotopy Type Theory
	Homotopy Type Theory and Linearity
	References

