Extending Homotopy Type Theory with Linear Type Formers

Mitchell Riley¹ jww. Dan Licata¹ Eric Finster²

Wesleyan University¹ University of Cambridge²

26th March 2021

Homotopy Type Theory

Martin-Löf Type Theory with:

- Dependent pair types $(x : A) \times B$
- Dependent function types $(x : A) \rightarrow B$
- Empty type 0
- Unit type 1
- Equality types $a =_A a'$
- ▶ Universe \mathcal{U}

Equality Types

=-FORM
$$\frac{\Gamma \vdash a : A \qquad \Gamma \vdash a' : A}{\Gamma \vdash a =_A a' : \mathcal{U}}$$
=-INTRO
$$\frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{refl}_a : a =_A a}$$
$$\frac{\Gamma, x : A, y : A, z : x =_A y \vdash C : \mathcal{U}}{\Gamma, w : A \vdash c : C[w/x, w/y, \mathsf{refl}_w/z]}$$
$$=-\text{ELIM} \frac{\Gamma \vdash p : a =_A a'}{\Gamma \vdash \mathsf{let} \, \mathsf{refl}_w = p \, \mathsf{in} \, c : C[a/x, b/y, p/z]}$$

- Intro: There is always a reflexivity equality.
- Elim: If type depending on a generic equality is inhabited for reflexivity, it's inhabited for any equality.

Equality of Pairs

Equality of pairs can be described explicitly.

Lemma $(a, b) =_{(x:A)\times B} (a', b')$ is equivalent to $(p : a =_A a') \times (b =_{B(a)} p^*b')$ where $p^* : B(a') \to B(a)$ is defined using =-elim.

Equality of Pairs

Equality of pairs can be described explicitly.

Lemma $(a,b) =_{(x:A)\times B} (a',b')$ is equivalent to $(p:a =_A a') \times (b =_{B(a)} p^*b')$

where $p^* : B(a') \to B(a)$ is defined using =-elim.

Definition

A function $f : A \to B$ is an equivalence if it has a left inverse and right inverse (up to =). Write $A \simeq B$ for a pair of a map $A \to B$ and a proof it is an equivalence.

We can't prove anything interesting about equality of functions.

We can't prove anything interesting about equality of functions. Is there a candidate type for $f =_{(x:A) \to B} g$ to be equivalent to?

We can't prove anything interesting about equality of functions. Is there a candidate type for $f =_{(x:A) \to B} g$ to be equivalent to? Yes!

$$\begin{aligned} (\lambda p.\mathsf{let}\;\mathsf{refl}_h &= p \mathsf{in}\;\lambda x.\mathsf{refl}_{h(x)}) \\ &: (f = g) \to \big((x:A) \to f(x) =_{B(x)} g(x)\big) \end{aligned}$$

We can't prove anything interesting about equality of functions. Is there a candidate type for $f =_{(x:A)\to B} g$ to be equivalent to? Yes!

$$\begin{aligned} (\lambda p.\mathsf{let}\;\mathsf{refl}_h &= p \mathsf{in}\; \lambda x.\mathsf{refl}_{h(x)}) \\ &: (f = g) \to \big((x:A) \to f(x) =_{B(x)} g(x) \big) \end{aligned}$$

Axiom (Function Extensionality) *This map is an equivalence.*

We can't prove anything interesting about equality of functions. Is there a candidate type for $f =_{(x:A)\to B} g$ to be equivalent to? Yes!

$$\begin{aligned} (\lambda p.\mathsf{let}\;\mathsf{refl}_h &= p \mathsf{in}\; \lambda x.\mathsf{refl}_{h(x)}) \\ &: (f = g) \to \big((x:A) \to f(x) =_{B(x)} g(x) \big) \end{aligned}$$

Axiom (Function Extensionality)

This map is an equivalence.

Asserting this axiom restricts the interpretations of the type theory. (But sets still work!)

What about the universe?

What about the universe? Another guess:

$$(\lambda p.\mathsf{let refl}_C = p \mathsf{in id}_C) : (A = B) \to (A \simeq B)$$

What about the universe? Another guess:

$$(\lambda p.\mathsf{let}\ \mathsf{refl}_C = p \,\mathsf{in}\,\mathsf{id}_C) : (A = B) \to (A \simeq B)$$

Axiom (Univalence) This map is an equivalence.

Uniqueness of Identity Proofs?

In sets, the type $a =_A a'$ is given by $\{\star\}$ if the element a is the same element as a', and \emptyset otherwise.

Uniqueness of Identity Proofs?

In sets, the type $a =_A a'$ is given by $\{\star\}$ if the element a is the same element as a', and \emptyset otherwise.

Axiom (Uniqueness of Identity Proofs) For any $p, p' : a =_A a'$, there is a term of p = p'.

Uniqueness of Identity Proofs?

In sets, the type $a =_A a'$ is given by $\{\star\}$ if the element a is the same element as a', and \emptyset otherwise.

Axiom (Uniqueness of Identity Proofs) For any $p, p' : a =_A a'$, there is a term of p = p'. UIP and Univalence are incompatible:

Proof.

There are two equivalences id, swap : Bool \simeq Bool. Univalence turns these into equalities ua(id), ua(id) : Bool = Bool, and UIP claims these equalities are equal. So ua(id) = ua(swap) which means id = swap, but then

$$true = id(true) = swap(true) = false$$
,

uh oh.

Proof Relevance

Diagram stolen from Pelayo and Warren

Proof Relevance

Diagram stolen from Pelayo and Warren

Theorem (Kapulkin and Lumsdaine 2012, after Voevodsky)

HoTT, meaning (MLTT + Univalence + HITs), has an interpretation in 'simplicial sets'.

which are a model of the homotopy theory of spaces. I think of these as 'sets with possibly complicated equalities'.

Theorem (Kapulkin and Lumsdaine 2012, after Voevodsky)

HoTT, meaning (MLTT + Univalence + HITs), has an interpretation in 'simplicial sets'.

which are a model of the homotopy theory of spaces. I think of these as 'sets with possibly complicated equalities'.

Homotopy (Type Theory) \leftrightarrow (Homotopy Type) Theory

Working Synthetically

Result	Date	Synthetic Version
$\pi_1(S^1) = \mathbb{Z}$	1892	Licata, Shulman
Freudenthal Suspension Theorem	1937	Lumsdaine
Blakers-Massey Theorem	1949	Favonia, Finster, Licata, Lumsdaine
James Construction	1955	Brunerie
Localisation of Spaces	1970	Christensen, Opie, Rijke, Scoccola

Can be formalised *and* apply in all models.

Modal Homotopy Type Theory

Brouwer's Fixed Point Theorem

Sometimes working up to homotopy is not enough.

Theorem (Brouwer)

Let \mathbb{D}^2 denote the unit disc. Any continuous map $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

Brouwer's Fixed Point Theorem

Sometimes working up to homotopy is not enough.

Theorem (Brouwer)

Let \mathbb{D}^2 denote the unit disc. Any continuous map $f : \mathbb{D}^2 \to \mathbb{D}^2$ has a fixed point.

Up to homotopy, \mathbb{D}^2 is equivalent to 1. But then the theorem is contentless: of course any map $1 \to 1$ has a fixed point.

We need a way of thinking about \mathbb{D}^2 as a topological space made up of distinct points that are not equal to each other.

Change the Interpretation

Rather than interpreting types as homotopy types (= sets with complicated equality), we can interpret them as 'topological ∞-groupoids' (= sets with complicated equality AND a topology)

Change the Interpretation

Rather than interpreting types as homotopy types (= sets with complicated equality), we can interpret them as 'topological ∞-groupoids' (= sets with complicated equality AND a topology)

	Trivial Equality	Interesting Equality
Trivial Topology	$1,\mathbb{N}$	
Interesting Topology	$\mathbb{D}^2\subset\mathbb{R}^2,\mathbb{S}^1\subset\mathbb{R}^2$	U

Accessing the New Structure

Cohesive Type Theory (Shulman 2018) adds new unary type formers:

- ► #*A* retopologises *A* with the codiscrete topology
- ► *bA* retopologises *A* with the discrete topology
- $\int A$ turns *topological paths* in A into *equalities*

Accessing the New Structure

Cohesive Type Theory (Shulman 2018) adds new unary type formers:

- ► #*A* retopologises *A* with the codiscrete topology
- ► *bA* retopologises *A* with the discrete topology
- $\int A$ turns *topological paths* in A into *equalities*

	Trivial Equality	Interesting Equality
Trivial Topology	1, ℕ, $\int \mathbb{D}^2$	$\int \mathbb{S}^1$
Interesting Topology	$\mathbb{D}^2\subset \mathbb{R}^2, \mathbb{S}^1\subset \mathbb{R}^2$	U

Extremely roughly:

$$\begin{array}{l}
\flat \text{-INTRO} & \frac{\Gamma \vdash a : A}{\mathsf{f}(\Gamma) \vdash a^{\flat} : \flat A} \\ \\
\Gamma, z : \flat A \vdash C \text{ type} \\ \\
\flat \text{-ELIM} & \frac{\Gamma \vdash s : \flat A}{\Gamma \vdash \mathsf{f}(x : A) \vdash c : C[x^{\flat}/z]} \\ \hline \Gamma \vdash \mathsf{let} \ x^{\flat} = s \operatorname{in} c : C[s/z]
\end{array}$$

Much like \Box in the style of (Pfenning and Davies 2001) Or ! in Dual Intuitionistic Linear Logic by (Barber 1996) The plan is:

- 1. Think of a model of HoTT with more structure than bare homotopy types,
- 2. Add some semantic operations as context formers,
- **3**. Add new type formers internalising the context formers. Our goal is to *extend* HoTT so we have access to all the synthetic results proven so far.

Homotopy Type Theory and Linearity

Stable Homotopy Theory

An important tool in homotopy theory is 'cohomology'. For any space *X*, there is a sequence of groups $H^n(X)$ containing information about the space.

There are many kinds of cohomology *H*, and each kind can be packaged into a 'spectrum'. A spectrum is a proof relevant version of an abelian group.

Stable Homotopy Theory

An important tool in homotopy theory is 'cohomology'. For any space *X*, there is a sequence of groups $H^n(X)$ containing information about the space.

There are many kinds of cohomology *H*, and each kind can be packaged into a 'spectrum'. A spectrum is a proof relevant version of an abelian group.

Definition

A *spectrum E* is a sequence of pointed types $E : \mathbb{N} \to \mathcal{U}_{\star}$ together with pointed equivalences $\alpha_n : E_n \to_{\star} \Omega E_{n+1}$, where $\Omega(A, \star) :\equiv (\star =_A \star)$.

 $E_0 \simeq \Omega E_1$, so E_0 is a group. $E_0 \simeq \Omega \Omega E_2$, so E_0 is abelian. $E_0 \simeq \Omega \Omega \Omega E_3$, so the commutativity of E_0 satisfies one level of coherence ... We could use the above definition of spectra and manipulate them using type theory. But that's hard!

The category of spectra is a model of Intuitionistic Linear Logic with $(\otimes, -\infty, \& = \oplus)$. But that is not very expressive compared with HoTT!

Definition

A *parameterised spectrum* is a ∞ -groupoid indexed family of spectra.

Translation: a set-with-equality, so that every element has an associated abelian-group-with-equality.

Definition

A *parameterised spectrum* is a ∞ -groupoid indexed family of spectra.

Translation: a set-with-equality, so that every element has an associated abelian-group-with-equality.

Definition

A *parameterised spectrum* is a ∞ -groupoid indexed family of spectra.

Translation: a set-with-equality, so that every element has an associated abelian-group-with-equality.

Definition

A *parameterised spectrum* is a ∞ -groupoid indexed family of spectra.

Translation: a set-with-equality, so that every element has an associated abelian-group-with-equality.

Theorem (Joyal 2008 plus Shulman 2019) *MLTT* + *Univalence can be interpreted in parameterised spectra.* For two types *A* and *B* there should be a type $A \otimes B$ that calculates the 'external tensor product'.

This is a symmetric monoidal product with no additional structural rules, like the \otimes of linear logic.

We can take a cue from 'bunched logics' (O'Hearn and Pym 1999), where there are two ways of combining contexts, an ordinary cartesian one and a linear one.

$\Gamma_1 \operatorname{ctx}$	$\Gamma_2 \operatorname{ctx}$	$\Gamma_1 ctx$	$\Gamma_2 \operatorname{ctx}$
$\Gamma_1, \Gamma_2 \operatorname{ctx}$		$(\Gamma_1)(\Gamma_2)$ ctx	

For the comma *only*, we have weakening and contraction as normal.

(We are ignoring dependency in \otimes for now)

Bunched Contexts

A typical context:

$$x : A, (y : B)(z : C, (p : P)(q : Q)), w : D$$

Bunched Contexts

A typical context:

$$x:A,(y:B)(z:C,(p:P)(q:Q)),w:D$$

Or as a tree:

This gets very confusing very fast. Instead, we track the tree structure of the context separately, in a 'palette'.

$$(x:A)(y:B), z:C, w:D$$

becomes

$$\mathfrak{r} \otimes \mathfrak{b} \mid x^{\mathfrak{r}} : A, y^{\mathfrak{b}} : B, z^{\top} : C, w^{\top} : D$$

This gets very confusing very fast. Instead, we track the tree structure of the context separately, in a 'palette'.

$$(x:A)(y:B), z:C, w:D$$

becomes

$$\mathbf{\mathfrak{r}} \otimes \mathbf{\mathfrak{b}} \mid \mathbf{x}^{\mathbf{\mathfrak{r}}} : A, \mathbf{y}^{\mathbf{\mathfrak{b}}} : B, \mathbf{z}^{\top} : C, \mathbf{w}^{\top} : D$$

where the palette $\mathfrak{r} \otimes \mathfrak{b}$ on its own represents

From earlier,

$$x:A,(y:B)(z:C,(p:P)(q:Q)),w:D$$

becomes

$$\mathfrak{r} \otimes (\mathfrak{g} \prec \mathfrak{b} \otimes \mathfrak{y}) \mid x^{\top} : A, y^{\mathfrak{r}} : B, z^{\mathfrak{g}} : C, p^{\mathfrak{b}} : P, p^{\mathfrak{y}} : Q, w^{\top} : D$$

From earlier,

$$x:A,(y:B)(z:C,(p:P)(q:Q)),w:D$$

becomes

$$\mathfrak{r} \otimes (\mathfrak{g} \prec \mathfrak{b} \otimes \mathfrak{y}) \mid x^{\top} : A, y^{\mathfrak{r}} : B, z^{\mathfrak{g}} : C, p^{\mathfrak{b}} : P, p^{\mathfrak{y}} : Q, w^{\top} : D$$

$$\otimes \text{-FORM} \frac{\cdot | \cdot \vdash A \text{ type} \quad \cdot | \cdot \vdash B \text{ type}}{\Phi | \Gamma \vdash A \otimes B \text{ type}}$$

We can form $A \otimes B$ for any closed types *A* and *B*. (We will upgrade this later.)

Tensor Types

VAR
$$\overline{\Phi \mid \Gamma, \boldsymbol{x}^{\top} : A, \Gamma' \vdash \boldsymbol{x} : A}$$

A variable is only usable if it has the top colour.

$$\otimes \text{-INTRO} \frac{\Phi_{L} \mid \Gamma^{\Phi_{L}} \vdash a : A \quad \Phi_{R} \mid \Gamma^{\Phi_{R}} \vdash b : B}{\Phi \mid \Gamma \vdash a \otimes b : A \otimes B}$$

Whenever we can split the palette into two pieces, use variables from one piece to prove *a* and the other to prove *b*, then we have $a \otimes b : A \otimes B$. Here the colours really come in handy!

$$\begin{split} \Phi \mid \Gamma, z^{\top} : A \otimes B \vdash C \text{ type} \\ \Phi, \mathfrak{r} \otimes \mathfrak{b} \mid \Gamma, x^{\mathfrak{r}} : A, y^{\mathfrak{b}} : B \vdash c : C[x \otimes y/z] \\ \Phi \mid \Gamma \vdash s : A \otimes B \\ \hline \Phi \mid \Gamma \vdash \text{let } x \otimes y = p \text{ in } c : C[s/z] \end{split}$$

If something holds for a *generic tensor pair* $x \otimes y$, then it holds for any particular $p : A \otimes B$.

Proposition

For any types A and B, there is a map $swap : A \otimes B \rightarrow B \otimes A$ *.*

Proof.

Suppose we have a $p : A \otimes B$. By \otimes -elim, we can suppose p is equal to $x \otimes y$ for fresh variables x and y. Then we have $y \otimes x : B \otimes A$.

$$\lambda p.$$
let $x \otimes y = p$ in $y \otimes x : A \otimes B \to B \otimes A$

Note \rightarrow is the ordinary function type here.

Eg: Tensors and Ordinary Types

We can do whatever non-linear stuff we like with variables we have access to:

 $\lambda p.$ let $x \otimes y = p$ in $(x, x) \otimes y : A \otimes B \to (A \times A) \otimes B$

Eg: Tensors and Ordinary Types

We can do whatever non-linear stuff we like with variables we have access to:

$$\lambda p$$
.let $x \otimes y = p$ in $(x, x) \otimes y : A \otimes B \to (A \times A) \otimes B$

 $\lambda p.$ let $x \otimes y = p$ in $(x =_A x) \otimes (y =_B y) : A \otimes B \to \mathcal{U} \otimes \mathcal{U}$

Eg: Tensors and Ordinary Types

We can do whatever non-linear stuff we like with variables we have access to:

$$\lambda p. \text{let } \mathbf{x} \otimes \mathbf{y} = p \text{ in } (\mathbf{x}, \mathbf{x}) \otimes \mathbf{y} : A \otimes B \to (A \times A) \otimes B$$

 $\lambda p.$ let $x \otimes y = p$ in $(x =_A x) \otimes (y =_B y) : A \otimes B \to \mathcal{U} \otimes \mathcal{U}$

If $f : C \otimes C \rightarrow \mathbb{N}$ we can do:

 $\lambda p. \text{let } z \otimes w = p \inf f(p) + f(w \otimes z) : C \otimes C \to \mathbb{N}$

We cannot define $\Delta : A \to A \otimes A$ in general.

Given a : A, forming $a \otimes a : A \otimes A$ is not allowed: the two inputs to \otimes -intro are not well-formed in disjoint pieces of the palette.

We cannot define $\Delta : A \to A \otimes A$ in general.

Given a : A, forming $a \otimes a : A \otimes A$ is not allowed: the two inputs to \otimes -intro are not well-formed in disjoint pieces of the palette.

We cannot define $e : (A \otimes (A \rightarrow B)) \rightarrow B$ in general.

We can destruct a term of $A \otimes (A \rightarrow B)$ into x : A and $f : A \rightarrow B$, but f(x) is not well formed: neither variable has the top colour, so can't be used.

$$\otimes \text{-INTRO} \ \frac{\Phi_L \mid \Gamma^{\Phi_L} \vdash a : A \qquad \Phi_R \mid \Gamma^{\Phi_R} \vdash b : B}{\Phi \mid \Gamma \vdash a \otimes b : A \otimes B}$$

The syntactic issue with dependency is when we drop variables in \otimes -intro.

Inspecting the semantics, $(x : A) \otimes B(x)$ only makes sense when B(x) only varies over the *underlying space* of *x*.

For every type *A* there is a type arrow A that deletes the spectral information.

We have to add a context version of this operation: we call it marking, and add a special 'marked variable' rule.

$$\begin{array}{l} & \quad \forall AR\text{-MARKED} \ \overline{\Phi \mid \Gamma, x^{t} : A, \Gamma' \vdash \underline{x} : \underline{A}} \\ & \quad \otimes \text{-FORM} \ \frac{\cdot \mid \underline{\Gamma} \vdash A \ \text{type} \quad \cdot \mid \underline{\Gamma}, \underline{x} : A \vdash B \ \text{type}}{\Phi \mid \Gamma \vdash (\underline{x} : A) \otimes B \ \text{type}} \end{array}$$

 \underline{x} can be used anywhere, even if \underline{x}^{t} doesn't have the top colour.

Now, when splitting the context, don't drop anything, just require it be used marked:

$$\otimes \text{-INTRO} \frac{\cdot \mid \mathbf{x} : A, \underline{y} : B(\underline{x}) \vdash \mathbf{c} : C \qquad \cdot \mid \underline{x} : A, y : B(\underline{x}) \vdash \mathbf{d} : D}{\mathbf{\mathfrak{r}} \otimes \mathfrak{b} \mid \mathbf{x} : A, y : B(\underline{x}) \vdash \mathbf{c} \otimes \mathbf{d} : C \otimes D}$$

Other Linear Dependent Theories

- (Schöpp and Stark 2004) is a dependent bunched theory, but has no dependency across bunches, and assumes the unit is terminal.
- (Vákár 2014) has linear type formers, but its dependent pairs/functions work differently to MLTT.
- 'LNL' type theories (Isaev 2020; Krishnaswami, Pradic and Benton 2015) separate linear types from non-linear types, so existing synthetic results can't be used.
- Quantitative Type Theories (McBride 2016; Atkey 2018) have 0-use variables that are similar our marked variables, but do not allow 'ordinary' dependence
- GRTT (Moon, Eades III and Orchard 2021) is a general framework for dependent modal theories, perhaps there is an encoding?

References I

Atkey, Robert (2018). 'Syntax and semantics of quantitative type theory'. In: *Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science*, pp. 56–65. DOI: 10.1145/3209108.3209189.

Barber, Andrew (1996). Dual Intuitionistic Linear Logic. Tech. rep. Technical Report ECS-LFCS-96-347. University of Edinburgh.
Isaev, Valery (2020). 'Indexed type theories'. In: Mathematical Structures in Computer Science, pp. 1–61. DOI: 10.1017/S0960129520000092.
Joyal, André (2008). Notes on logoi. URL: http:

//www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf. Kapulkin, Chris and Peter LeFanu Lumsdaine (2012). 'The simplicial model of univalent foundations (after Voevodsky)'. In: Journal of the European Mathematical Society. arXiv: 1211.2851 [math.LO]. Forthcoming.

References II

Krishnaswami, Neelakantan R., Pierre Pradic and Nick Benton (2015). 'Integrating Linear and Dependent Types'. In: *Proceedings* of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL '15. Mumbai, India: Association for Computing Machinery, pp. 17–30. ISBN: 9781450333009. DOI: 10.1145/2676726.2676969.
McBride, Conor (2016). 'I got plenty o' nuttin''. In: A list of successes that can change the world. Vol. 9600. Lecture Notes in Comput. Sci. Springer International Publishing, pp. 207–233. DOI: 10.1007/978–3–319–30936–1_12.
Moon Benjamin Harlow Fades III and Dominic Orchard (2021)

Moon, Benjamin, Harley Eades III and Dominic Orchard (2021). 'Graded Modal Dependent Type Theory'. In: *Programming Languages and Systems*. Ed. by Nobuko Yoshida. Cham: Springer International Publishing, pp. 462–490.

O'Hearn, Peter W. and David J. Pym (1999). 'The logic of bunched implications'. In: *Bull. Symbolic Logic* 5.2, pp. 215–244. ISSN: 1079-8986. DOI: 10.2307/421090.

References III

Pfenning, Frank and Rowan Davies (2001). 'A judgmental reconstruction of modal logic'. In: vol. 11, pp. 511–540. DOI: 10.1017/S0960129501003322.

- Schöpp, Ulrich and Ian Stark (2004). 'A dependent type theory with names and binding'. In: *Computer Science Logic*. Vol. 3210. Lecture Notes in Comput. Sci. Springer, Berlin, pp. 235–249. DOI: 10.1007/978-3-540-30124-0_20.
- Shulman, Michael (2018). 'Brouwer's fixed-point theorem in real-cohesive homotopy type theory'. In: *Math. Structures Comput. Sci.* 28.6, pp. 856–941. ISSN: 0960-1295. DOI: 10.1017/S0960129517000147.
- (2019). 'All (∞, 1)-toposes have strict univalent universes'. arXiv: 1904.07004 [math.AT].
- Vákár, Matthjis (2014). 'Syntax and Semantics of Linear Dependent Types'. arXiv: 1405.0033 [cs.AT].