Combining Bunched Type Theory
with Dependent Types

Mitchell Riley

Wesleyan University

jww. Dan Licata
Wesleyan University

15* February 2022

Introduction

» In Computer Science, type theories are often created first
and then categorical semantics are devised for them.

» Today, an example of the backwards direction: we have a
categorical structure in mind, and want a type theory.

> Goal: a practical type theory for working with
‘parameterised spectra’ which form a category that is both
locally cartesian closed, and also monoidal closed.

The Simply Typed A-Calculus

Fz:AT'Fz: A

'p: Ax B
'ta:A '-b:B INz:Ay:Btc:C
't (a,b): Ax B I'klet(z,y) =pinc: C
Iz:A+b: B 'f:A—B I'Fa:A
'-Xeb:A— B 't f(a): B

These rules (and some omitted equations) present the free
cartesian closed category on a set of objects.

Eg: Symmetry

Proposition
sym: AxB— BxA

Proof.
To define sym: A x B — B x A, suppose we have p: A x B.

Then splitting allows us to assume p = (z,y) and we then have
(y,).

sym := Ap.let (z,y) = pin (y,x)

Interpretation

» FEach type A is interpreted as an object [A]

» Each term z1 : Ay,... 2, : Ay F b: B is interpreted as a
morphism

[o] : [As] > - x [An] — [B]

Type Theory

Curry-Howard-Lambek Correspondence

Categorical Structure

Simply Typed
Lambda Calculus

Dependent Type Theory
with 1, ¥ and Extensional =

.. and II

. and 0, +, Prop, Axioms

Cartesian Closed Categories
Finitely Complete Categories

Locally Cartesian Closed Categories

Elementary Topos

Simply Typed

Lambda Calculus
Multiplicative Intuitionistic
Linear Logic

Classical Linear Logic

Cartesian Closed Categories
Monoidal Closed Categories

x-Autonomous Categories

This Type Theory

LCCC + Monoidal Closed

Dependent Type Theory

Type theory can be made more expressive by allowing types to
depend on terms: I' - A type.

Example
The set of days in a month depends on which month we are
talking about: x : Month F DayOf(z) type

Example
Each point of a differentiable manifold has a tangent space:
z: MET,M type

Dependent Type Theory
The product type can be generalised to dependent pairs:

'+ A type I'yz: At B(z) type
I'F (z:A) x B(z) type

Y-FORM

F'kFa:A I'b: B(a)
' (a,b):(x:A)x B(x)

Y>-INTRO

Example
The dependent pair type (x : Month) x DayOf(x) is type of all
days in the year.

The dependent pair type (z: M) x T, M is the tangent bundle
TM.

Dependent Type Theory

A type of equalities is expressible:

T'Fa:A 'ktd:A
=-FORM

I'Fa=ad type

I'a:A
T'krefl,:a=a

=-INTRO

10

Interpretation

>

A type I' - A type is interpreted as an object [A] of the
slice C;ry

The context I', x : A is interpreted as the object [A] of C.

A term ' - a : A is interpreted as a morphism
[[a]] : id[[p]] — [[A]] in C/[[F]]
The type (x : A) x B is interpreted as the composite

[B] — [A] = [I]

in C ik
The type a = d’ is interpreted as the diagonal

[A] = [AD <oy [A]

pulled back along the map [I'] — [A] xr [A] induced by
[a] and [a']

11

Curry-Howard-Lambek Correspondence

Type Theory Categorical Structure

Simply Typed

Lambda Calculus
Dependent Type Theory
with 1, ¥ and Extensional =

Cartesian Closed Categories
Finitely Complete Categories

.. and II Locally Cartesian Closed Categories

. and 0, +, Prop, Axioms Elementary Topos

Simply Typed

Lambda Calculus
Multiplicative Intuitionistic
Linear Logic

Cartesian Closed Categories
Monoidal Closed Categories

Classical Linear Logic x-Autonomous Categories

This Type Theory LCCC + Monoidal Closed

12

Dependent Type Theory

Similarly for dependent functions:

' A type Iz : AF B(z) type
'k (zx:A) — B(x) type

II-FORM

'-f:(x:A) — B(z) 'ka:A
't f(a): B(a)

II-ELIM

Example
The dependent function type (z : Month) — DayOf(x) is a
choice of one day from each month.

The dependent function type (x : M) — T, M is a vector field.
(sort of, one would need to think carefully about continuity)
13

Symmetry Again

Proposition

symxy : X XY =Y x X is an equivalence.

(‘f an equivalence’ means that there are g and ¢’ so that
pointwise fog=1id and ¢’ o f =id.)

Proof.

Its inverse is symy x. To prove

H(p:AX B)SYMy x (symx,y(p)) = p,

use splitting: the goal reduces to (z,y) = (x,y) for which we
have reflexivity. O

14

Interpretation

Weakening is interpreted by a pullback:

[A]" : C/irp = C)r,a:a)

> and II are interpreted in the category as the left- and
right-adjoint to weakening.

DM

Cirp ————— C/[ra:a]

= -

15

Type Theory

Curry-Howard-Lambek Correspondence

Categorical Structure

Simply Typed
Lambda Calculus

Dependent Type Theory
with 1, ¥ and Extensional =

.. and II

. and 0, +, Prop, Axioms

Cartesian Closed Categories
Finitely Complete Categories

Locally Cartesian Closed Categories

Elementary Topos

Simply Typed

Lambda Calculus
Multiplicative Intuitionistic
Linear Logic

Classical Linear Logic

Cartesian Closed Categories
Monoidal Closed Categories

x-Autonomous Categories

This Type Theory

LCCC + Monoidal Closed

16

Multiplicative Intuitionistic Linear Logic

r:iAFz: A
I'p: A® B
I'Fa:A I'b:B I'x:Ay:Bbtc:C
I,T'F(a®b): A® B O,TFlet(z®y) =pinc: C
Ix:AFb: B '-f:A—B I'kFa:A

'Fozb:A—B [T+ f(a): B

17

Eg: Symmetry

Proposition
sym: A B—-oB®A

Proof.
Suppose p : A ® B. Then splitting allows us to assume
p = (x ®y), and we then have (y ® x).

sym :=Jdp.let (x ®y) =pin(y ® x)

18

Non-Eg: Diagonal and Projection

We cannot define A : A — A ® A.

After assuming x : A, the term z ® x : A ® A is not well-formed:
only one side of the ® is permitted to use z.

We cannot define 71 : A ® B —o A.

After assuming p : A ® B and using splitting to obtain = : A
and y : B, we cannot conclude x : A, because y : B is unused.

19

Interpretation

» FEach type A is interpreted as an object [A]

» Each term z1 : Ay,... 2, : Ay F b: B is interpreted as a
morphism

[o] : [A] ® --- @ [An] — [B]

20

Curry-Howard-Lambek Correspondence

Type Theory Categorical Structure

Simply Typed

Lambda Calculus
Dependent Type Theory
with 1, ¥ and Extensional =

Cartesian Closed Categories
Finitely Complete Categories

.. and II Locally Cartesian Closed Categories

. and 0, +, Prop, Axioms Elementary Topos

Simply Typed

Lambda Calculus
Multiplicative Intuitionistic
Linear Logic

Cartesian Closed Categories
Monoidal Closed Categories

Classical Linear Logic x-Autonomous Categories

This Type Theory LCCC + Monoidal Closed

21

22

The Motivation

Our goal was to use type theory to reason about ‘spectra’; in
the sense of stable homotopy theory.

These form a symmetric monoidal closed oo-category
(Spec7 S? ®7 —O),

Think of the 1-category (Sets, Bool, A, —s).

These are models of linear logic.

23

Families

Definition
If C is a category, the category PC of parameterised families of
C has
» Objects given by (X, {E;},ex) where X is a set and E, is
an object of C for each x € X.
» Morphisms (X, {E;}) = (Y,{F,}) given by a pair (f,{fz})
where f: X — Y is a function and f, : Ey — Fy(,) is a
morphism of C for every x € X.

ooy 0
&ou |

24

Families

If C is monoidal closed, then PC is monoidal closed with the
‘external monoidal product’ ®.

In favourable conditions, PC is also locally cartesian closed.
(For example, when C is LCCC, but in some other unexpected
cases t00)

25

Families

(PSpec, S, ®, =)

of 44 o

(87 17 ><7%)

(PSetq, Bool, A, =)

(Set, 1, x, —)

(PM,I,®,—)

(Set, 1, x, —)

26

Linearity and Dependency

Linearity 4+ dependency has been done before, but:

» Indexed type theories (Vakar 2014; Krishnaswami, Pradic,
and Benton 2015; Isaev 2021) have semantics in indexed
monoidal categories,

» Quantitative type theories (McBride 2016; Atkey 2018;
Moon, Eades III, and Orchard 2021; Fu, Kishida, and
Selinger 2020) have restricted dependency for 3 and II,

» Existing dependent ‘bunched’ type theories (Schépp 2006;

Schopp and Stark 2004; Cheney 2009; Cheney 2012)
require I = 1.

27

28

The Symmetry Proof We Want

Proposition
sym: AR B~B®A

Proof.
To define sym: A® B — B® A, suppose we have p: A® B.
Then ®-induction allows us to assume p = x ® y, and we have

YR x.
sym:=\pletzRy=pinyRx

Then to prove [] ;. 455y sym(sym(p)) = p, use ®-induction
again: the goal reduces to z ® y = x ® y for which we have
reflexivity.

inv:= Ap.let z ® y = pinrefl g,

29

Colourful Variables

We need to prevent terms like Az.x @ 2 : A - A® A, so
variable use needs to be restricted somehow.

» Every variable x has a colour c.

» The relationships between colours are collected in a palette.

Palettes ® are constructed by
1 D1 @ Py Py, Do ¢ c<®
Typical palettes:
p<r®b w<(p<reb)e p<(rebt®b)

(Similar to ‘bunched’ type theory P. W. O’Hearn and Pym
1999; P. O’Hearn 2003)

30

Using Colourful Variables

Building a term, we need to keep track of the current ‘top
colour’. Suppose the palette is p < r ® b, and we have variables

2t Ay® B, 2P C.

» The top colour here is p.

» The only variable that can be used currently is z : C.
(Using = here would correspond to a projection from one
side of a tensor.)

» Ordinary type formers bind variables with the current top
colour:

(z: A) x B(z) (x:A) — B(x) (Az.b)

» The rules for ® will grant us access to the other variables.

31

Tensor

Say the top colour is p.

» Formation: For any closed (for now) types A and B we
can form the type A ® B.

» Introduction: Whenever we can split p into two colours
red and blue, use red to prove a and blue variables to prove
b, then we have a ® b: A® B.

» Elimination: If something holds for a generic tensor pair
x ® vy, then it holds for any particular p: A ® B.

32

Eg: Symmetry

Proposition
There is a functionsym: AQ B— B® A

Proof.
Suppose have p : A ® B. Then ®-induction on p gives z* : A
and y° : B, where p <r®b.

Split p into b and r. Then we can form y ®, 2 : B® A.

sym:= Ap.let z @,y =piny ,&,

33

Non-Eg: Colour Clashes

> We cannot define A: A - A® A in general.

Given a : A, forming a ® a : A ® A is not allowed: the two
inputs to ®-intro are not well-formed in separate pieces of
the palette.

» We cannot define e : (A ® (A — B)) — B in general.

We can destruct a term of A ® (A — B) into = : A and
f:A— B, but f(z)is not well formed: neither variable
has the top colour, so can’t be used.

34

Eg: Tensors and Ordinary Types

» Once we have access to a variable, we can use it however
we like:

Aplet @y =pin(r,2)@y: AQB — (Ax A)® B

» Using ®-elimination does not ‘consume’ the variable being
inspected. If f: C ® C — N we can do:

Aplet z@w=pinf(p)+ flwu®z):CxC —N

35

Hom

I'x AFB

I'rA— B

I'®AF B
'HA—-B

36

Hom

I'x(x:A)Fb:B

'o(y:ArFb:B

'Xzb:(x:A)— B

I'Foyb:(y:A) — B

37

Underlying Space

For every type A there is a type §A that deletes the C

e
-

38

Marked Variables

Solved by using ‘marked variables’ x : A, a second way of using
variables.

This lets us add dependency to ®: we can form

» If A and B are types where all free variables in A and B
are marked, then we can form A ® B.

» Additionally, B can be allowed to use a variable x : A
marked, and we can form (z : A) ® B.

(A ‘sublocal monoidal closed structure’, in the language of Fu,
Kishida, and Selinger 2020.)

39

Conclusion

» The dependency of ¥, = and II are exactly as in ordinary
dependent type theory.

» The dependency of ® and —o is mediated by .

» The two worlds coexist, giving a very expressive type
theory!

Thanks!

40

References |

Robert Atkey (2018). “Syntax and Semantics of Quantitative Type
Theory”. In: Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science. DOI:
10.1145/3209108.3209189.

James Cheney (2009). “A Simple Nominal Type Theory”. In:
Proceedings of the International Workshop on Logical Frameworks
and Metalanguages: Theory and Practice (LEMTP 2008).

Vol. 228. por: 10.1016/j.entcs.2008.12.115.

— (2012). “A dependent nominal type theory”. In: Logical Methods
in Computer Science 8.1. DOI: 10.2168/LMCS-8(1:8)2012.

Peng Fu, Kohei Kishida, and Peter Selinger (2020). “Linear
Dependent Type Theory for Quantum Programming Languages:
Extended Abstract”. In: Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science. DOL:
10.1145/3373718.3394765.

41

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1016/j.entcs.2008.12.115
https://doi.org/10.2168/LMCS-8(1:8)2012
https://doi.org/10.1145/3373718.3394765

References Il

Valery Isaev (2021). “Indexed type theories”. In: Mathematical

10.1017/50960129520000092.

Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton (2015).

“Integrating Linear and Dependent Types”. In: Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. DOT: 10.1145/2676726.2676969.

Conor McBride (2016). “I Got Plenty o’ Nuttin’. In: A list of
successes that can change the world. Vol. 9600. DOI:
10.1007/978-3-319-30936-1_12.

Benjamin Moon, Harley Eades III, and Dominic Orchard (2021).
“Graded Modal Dependent Type Theory”. In: Programming
Languages and Systems. DOIL: 10.1007/978-3-030-72019-3_17.

Peter O’Hearn (2003). “On bunched typing”. In: Journal of

Functional Programming 13.4. DOI: 10.1017/30956796802004495.

Peter W. O’Hearn and David J. Pym (1999). “The Logic of Bunched
Implications”. In: Bulletin of Symbolic Logic 5.2. DOTI:
10.2307/421090.

42

https://doi.org/10.1017/S0960129520000092
https://doi.org/10.1145/2676726.2676969
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.2307/421090

References ||

Ulrich Schopp (2006). “Names and Binding in Type Theory”.
PhD thesis. University of Edinburgh. URL: https:
//ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934.
Ulrich Schépp and Ian Stark (2004). “A Dependent Type Theory with
Names and Binding”. In: Computer Science Logic. Vol. 3210. DOI:
10.1007/978-3-540-30124-0_20.

Matthjis Vakéar (2014). Syntax and Semantics of Linear Dependent
Types. arXiv: 1405.0033 [cs.AT].

43

https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934
https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.561934
https://doi.org/10.1007/978-3-540-30124-0_20
https://arxiv.org/abs/1405.0033

	Curry-Howard-Lambek Correspondences
	Our Setting
	Type Theory
	References

